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1. Introduction

the Mixed Proportional Hazard (MPH) model for duration data that was inde-

pendently introduced by Lancaster (1979) and Manton, Stallard and Vaypel (1981). It

has been used quite frequently in empirical work but the standing of this model among

econometricians has changed over time. Lancaster noted that the MPH model provided a

simple framework for the distinction between unobserved heterogeneity and duration de-

pendence. The question whether these two components of the MPH model are separately

identified and estimable with samples of reasonable size has been answered differently.

Lancaster’s original answer was negative. He gave a simple example in which an observed

duration distribution was consistent with an MPH model with duration dependence, but

no heterogeneity, and an MPH model with no duration dependence, but with unobserved

heterogeneity. Elbers and Ridder (1982) (see also Heckman and Singer (1984a) ) showed

that to identify unobserved heterogeneity and duration dependence separately, some ex-

ogenous variation is needed. Besides exogenous variation, they made an at first sight

innocuous assumption on the distribution of the unobserved heterogeneity, namely that

this distribution had a finite mean. Heckman and Singer replaced this assumption by a

restriction on the tail behavior of the unobserved heterogeneity distribution, in particular

that the exponential rate at which this tail went to zero was known.

These results on nonparametric identification led to the development of estimation

methods that required fewer parametric assumptions. Heckman and Singer (1984b) used

the NPMLE for mixture models that was first characterized by Lindsay (1983) to esti-

mate regression parameters and the parameters of the baseline hazard in an MPH model.

Biostatisticians who are reluctant to make parametric assumptions on the baseline hazard

introduced a method that assumes a parametric distribution for the unobserved hetero-

geneity, but is nonparametric with respect to the duration dependence (see Nielsen et al.

(1992)). A problem with Heckman and Singer’s NPMLE is that the speed of convergence

and the asymptotic distribution of the estimators are not known. This is not just a the-

oretical concern. Simulation studies, e.g. the recent study by Baker and Melino (2000),

have shown that the NPMLE gives biased estimates of all the parameters in the MPH
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model if the baseline hazard is left fairly free.

Horowitz (1999) proposed a semiparametric estimator for the MPH model that does

not require parametric assumptions either on the unobserved heterogeneity or on the

duration dependence. This estimator is based on Horowitz’s (1996) estimator for a semi-

parametric transformation model. The main problem in the estimation of the parameters

of the MPH model is the estimation of a scale parameter. This scale parameter enters

the (integrated) baseline hazard as a power and the regression parameter as a multiplica-

tive constant. The scale parameter is identified by the assumption that the mean of the

distribution of the unobserved heterogeneity is finite. Because the estimator of the scale

parameter only uses information on durations close to zero, the rate of convergence is

N1/3, the fastest possible rate given the model. Honoré (1990) proposed an estimator

for the Weibull MPH based on the same idea, and his estimator has the same rate of

convergence. The slow rate of convergence of these estimators is an impediment to their

use in applied work. It is, however, consistent with the Monte Carlo evidence on the

NPMLE and also with a result in Hahn (1994). Hahn shows that in the MPH model with

Weibull baseline hazard (but unspecified distribution for the unobserved heterogeneity),

the effi ciency bound is singular. This precludes the existence of regular
√
N consistent

estimators of the parameters of this model. He also shows that
√
N consistent estimators

may exist if there are repeated spells on the same individual, and there seemed to be an

emerging consensus that
√
N consistent estimators would require multiple spells for each

individual.

These results suggest that the original idea of using the MPH model to distinguish

between unobserved heterogeneity and duration dependence is sound in theory, but that

in practice this can be done only in very large samples. However, the situation may not

be as bleak. For instance, Ridder and Woutersen (2003) reconsider Hahn’s (1994) result.

They show that the Weibull example is a worst case, although it is not the only parametric

model that gives a singular effi ciency bound. They characterize the class of parametric

models for the baseline hazard that gives a singular bound, and they show that a common

feature of this class is that the baseline hazard in 0 is either 0 or ∞. Note that this is the
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case for the Weibull baseline hazard. Although MPH models with Weibull like baseline

hazards are identified, their estimation is problematic. Ridder and Woutersen argue that

Weibull type behavior near zero is a consequence of a convenient functional form and

not of interest in its own right. The distinction between unobserved heterogeneity and

duration dependence is more relevant for strictly positive durations. They show that

bounding the baseline hazard away from 0 and ∞ in 0 resolves the problem. Incidentally,

this assumption is also suffi cient for nonparametric identification of the MPH model and

with it the finite mean assumption can be discarded.

Until now we have taken for granted that it is important to make a distinction be-

tween unobserved heterogeneity and duration dependence. It has been argued (see e.g.

Wooldridge (2005) ) that the distinction is irrelevant if one wants to estimate the impact

of covariates on the average duration. There are, however, instances that the distinction

is important in its own right. Examples are the distinction between heterogeneity and

duration dependence as an explanation of the decreasing probability of re-employment for

the unemployed (Lancaster (1976), Heckman (1991)). Recently, Chiaporri and Salanie

(2000) have argued that the distinction is also important to understand insurance con-

tracts. The distinction is also important if one is interested in the effect of covariates on

the quantiles of the duration distribution, which may often be the more interesting effect.

In particular, let the waiting time to some event T have a conditional distribution given

observed and unobserved covariates with hazard rate

κ(t|Xh(t), V, θ) = λ(t, α)eβ
′X(t)V,

where X denotes the observed covariates and V is the multiplicative unobserved hetero-

geneity that is independent of V . For an MPH with such time constant covariates, the

derivative of the qth quantile tq(X) with respect to the covariate X is

∂tq(X)

∂X
= −β

Λ
(
tq(X);α

)
λ
(
tq(X);α

) (1)

which is independent of the distribution of the unobserved heterogeneity but depends on

the baseline hazard.

In this paper we consider a simple
√
N consistent estimator for the parameters of a

semiparametric MPH model with unspecified distribution of the unobserved heterogeneity.
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This estimator is a GMM estimator that uses moment conditions to derive estimating

equations. It is based on the linear rank statistic of Prentice (1978). That statistic has

been used by Tsiatis (1990) to estimate the parameters of a censored regression model and

by Robins and Tsiatis (1992) in the Accelerated Failure Time model. In its simplest form,

the estimator does not require nonparametric estimation of unknown densities. Hence,

it is simpler than the semiparametric maximum likelihood estimator of Bearse et al.

(2007). Moreover, we provide primitive conditions under which our estimator converges

while Bearse et al. (2007) assume
√
N consistency. Both the simple estimator in this

paper and the Bearse et al. (2007) estimator are based on the idea that the population

distribution of the integrated baseline hazard is independent of the covariates. Woutersen

(2000) and Ridder and Woutersen (2003) use the same idea to obtain an estimator that

does not require parametric assumptions on the baseline hazard. The GMM estimator

can be extended to the case in which some of the covariates are endogenous (Bijwaard

(2009) uses the estimator in such a case). The simple GMM estimator is not effi cient.

In the case of constant covariates and no censoring it does not reach the Hahn (1994)

effi ciency bound. Fully effi cient estimation requires a second step, in which the hazard

of the distribution of the integrated hazard is estimated. This hazard is then used to

construct the likelihood function for arbitrarily (noninformatively) censored integrated

hazards, and this likelihood is maximized over the parameters of the MPH model. As is

evident from the simulation results in Bearse et al., the second step requires much care,

even in the simpler case of no censoring, and achieving the effi ciency gain associated with

it may be problematic. Therefore, we recommend the simple GMM estimator.

A paper that is related to our work is Hausman and Woutersen (2005). That paper

does not use the identification strategy of Ridder and Woutersen (2003) and requires

some regressors to vary over time. This paper allows regressors to vary over time but

does not require it. By redefining the regressors to be zero in all but one period, this

paper can allow the effect of the regressors to have a different coeffi cient for each period,

while Hausman and Woutersen (2005) do not allow for that.

The outline of the article is as follows. In Section 2 a counting process interpretation
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of the MPH model is given. The counting process approach simplifies the definition of

predictable time—varying explanatory variables and noninformative censoring. Within

the framework of counting processes, the asymptotic properties of our estimator, which

is introduced in Section 3, can be elegantly justified by martingale theory. In Section 4

we derive the asymptotic properties of the (two stage) optimal linear rank estimator.

The weight functions of this estimator are obtained by substituting consistent first stage

estimators for the parameters and by using a nonparametric estimator for the hazard and

its derivative of the transformed durations. The Monte Carlo experiments of Section 5

give some insight into the (small) sample behavior of the estimator. Finally, in Section 6

we apply our estimator on a real data set of cyclical migration. Section 7 summarizes the

results and states our conclusion.

2. The Mixed Proportional Hazard model

The waiting time to some event T has a conditional distribution given observed and

unobserved covariates with hazard rate

κ(t|Xh(t), V, θ) = λ(t, α)eβ
′X(t)V. (2)

In (2) Xh(t) = {X(s)|0 ≤ s ≤ t} is the sample path of the observed covariates, X, up to

and including time t, which without loss of generality is assumed to be left continuous,

and V is the multiplicative unobserved heterogeneity. Because V is time constant we

assume that its value is determined at time zero. We assume that Xh(t) is independent of

V . Note that although we express the hazard at t as a function of X(t), we can allow for

lagged covariates by redefining X(t). The positive function λ(t;α) is the baseline hazard

that is specified up to a vector of parameters α. It reflects the duration dependence of

the hazard rate.

2.1. A Counting process approach. The counting process approach is a very useful

framework for analyzing duration data since an indicator can be used to denote whether

a transition happened or not. Andersen et al. (1993) have provided an excellent survey

of counting processes. Less technical surveys have been given by Moeschberger (1997),
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Therneau and Grambsch (2000), and Aalen et al. (2009). The main advantage of this

framework is that it allows us to express the duration distribution as a regression model

with an error term that is a martingale difference. Regression models with martingale

difference errors are the basis for inference in time series models with dependent obser-

vations. Hence, it is not surprising that inference is much simplified by using a similar

representation in duration models.

To start the discussion, we first introduce some notation. A counting process {N(t)|t ≥

0} is a stochastic process describing the number of events in the interval [0, t] as time

proceeds. The process contains only jumps of size +1. For single duration data, the event

can only occur once because the units are observed until the event occurs. Therefore we

introduce the observation indicator Y (t) = I(T ≥ t) that is equal to one if the unit is

under observation at time t and zero after the event has occurred. The counting process

is governed by its random intensity process, Y (t)κ(t), where κ(t) is the hazard in (2).

If we consider a small interval (t − dt, t] of length dt, then Y (t)κ(t) is the conditional

probability that the increment dN(t) = N(t) − N(t−) jumps in that interval given all

that has happened until just before t. By specifying the intensity as the product of this

observation indicator and the hazard rate, we effectively limit the number of occurrences

of the event to one. It is essential that the observation indicator only depends on events

up to time t.

Usually we do not observe T directly. Instead we observe T̃ = g(T,C) with g a known

function and C a random vector. The most common example is right censoring, where

g(T,C) = min(T,C). By defining the observation indicator as the product of the indicator

I(t ≤ T ) and, if necessary, an indicator of the observation plan, we capture when a unit

is at risk for the event. In the case of right censoring Y (t) = I(t ≤ T )I(t ≤ C), and in all

cases of interest we have Y (t) = I(t ≤ T )IA(t) with A a random set that may depend on

random variables. We assume that C and T are conditionally independent given X. The

history up to and including t, Yh(t) is assumed to be a left continuous function of t. The

history of the whole process also includes the history of the covariate process, Xh(t), and
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V . Thus, we have

Pr
(
dN(t) = 1|Yh(t), Xh(t), V

)
= Y (t)κ(t|Xh(t), V, θ). (3)

The sample paths of the conditioning variables should be up to t−, but because these

paths are left continuous we can take them up to t. A fundamental result in the theory

of counting processes, the Doob-Meier decomposition1 , allows us to write

dN(t) = Y (t)κ(t|Xh(t), V, θ)dt+ dM(t), (4)

where M(t), t ≥ 0 is a martingale with conditional mean and variance given by

E
(
dM(t)|V, Yh(t), Xh(t)

)
= 0 (5)

Var
(
dM(t)|V, Yh(t), Xh(t)

)
= Y (t)κ(t|Xh(t), V, θ)dt. (6)

The (conditional) mean and variance of the counting process are equal, so the distur-

bances in (4) are heteroscedastic. The probability in (3) is zero, if the unit is no longer

under observation. A counting process can be considered as a sequence of Bernoulli ex-

periments because if dt is small, (5) and (6) give the mean and variance of a Bernoulli

random variable. The relation between the counting process and the sequence of Bernoulli

experiments is given in (4) can be considered as a regression model with an additive error

that is a martingale difference. This equation resembles a time-series regression model.

The Doob-Meier decomposition is very helpful to the derivation of the distribution of the

estimators because the asymptotic behavior of partial sums of martingales is well-known.

2.2. Durations and Transformed Durations. The MPH model in (2) specifies the

conditional hazard of the distribution of T given Xh(t), V . Because V is not observed,

we need to integrate with respect to the conditional distribution of V given T > t, Xh(t)

to obtain the hazard conditional on Xh(t). An alternative approach is to consider the

transformed duration

h(t,Xh(t), θ) =

∫ t

0

λ(s;α)eβ
′X(s) ds. (7)

1The Doob—Meyer decomposition theorem is a theorem in stochastic calculus stating the conditions
under which a submartingale may be decomposed in a unique way as the sum of a martingale and a
continuous increasing process, see Meyer (1963) and Protter (2005).
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This transformation is the observed integrated baseline hazard, i.e. the integrated baseline

hazard except for the unobservable V . A key feature of the MPH model is that in the

population

h(T,Xh(T ), θ0) =
A

V

d
= U0 (8)

with A a standard exponential random variable.

Equations (7) and (8) show that the MPH model is essentially a transformation model

that transforms the conditional distribution of T given the observable covariates Xh(.) to

a positive random variable that is independent of Xh(.) and of the baseline hazard λ(.;α0).

This independence is the key to understanding the intuition behind the proposed Linear

Rank Estimator (LRE). The fact that the right hand side random variable is the ratio of a

standard exponential and a positive random variable only plays a role in the interpretation

of the components of the transformation as a baseline hazard and a regression function

that multiplies the baseline hazard. For parameter values θ 6= θ0, i.e. not equal to the

true values, we have

h(T,Xh(t), θ) = U (9)

with U a nonnegative random variable. We denote the inverse of h(T,Xh(t), θ) with

respect to its first argument by h−1(U,Xh(t), θ) and we sometime suppress the last to

arguments and use h(T ) and h−1(U) for h(T,Xh(t), θ) and h−1(U,Xh(t), θ). The hazard

rate of U = h(T ) is

κU (u|V ) = κT
(
h−1(u)

) 1

h′
(
h−1(u)

)
=

λ
(
h−1(u,Xh(u), θ), α0

)
λ
(
h−1(u,Xh(u), θ), α

) e(β0−β)′XU (u,θ)V, (10)

where XU (u, θ) = X
(
h−1(u,Xh(u), θ)

)
denotes the process of the timevarying covariate

on the transformed duration time.

Just as the distribution of T , that of the transformed duration U can be expressed

by a (transformed) counting process {NU (u, θ)|u ≥ 0}. The relation between the original

and transformed counting processes and the observation indicator is

NU (u, θ) = N
(
h−1(u,Xh(u), θ)

)
(11)

Y U (u, θ) = Y
(
h−1(u,Xh(u), θ)

)
. (12)
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The intensity of the transformed counting process (with respect to historyXU
h (u, θ), Y Uh (u, θ)

is (see Andersen et al. (1993), p. 87, and using (10))

Pr
(
dNU (u, θ) = 1

∣∣XU
h (u, θ), Y Uh (u, θ)

)
=

= Y U (u, θ)
λ
(
h−1(u,Xh(u), θ), α0

)
λ
(
h−1(u,Xh(u), θ), α

) e(β0−β)′XU (u,θ)E
[
V |XU

h (u, θ), Y Uh (u, θ)
]
du, (13)

and we denote this hazard by κU
(
u|XU

h (u, θ), Y Uh (u, θ)
)
. For the population parameter

value θ0, this becomes

Pr
(
dNU (u, θ0) = 1

∣∣∣XU
h (u, θ0), Y Uh (u, θ0)

)
= Y U (u, θ)E

[
V |XU

h (u, θ0), Y Uh (u, θ0)
]
du.

(14)

If censoring is noninformative, i.e. Y (t) = I(t ≤ T )IC(t) with C independent of T (but

possibly dependent on X), then

Pr
(
dNU (u, θ0) = 1

∣∣∣XU
h (u, θ0), Y Uh (u, θ0)

)
= Y U (u, θ)E

[
V
∣∣U0 ≥ u

]
du, (15)

and the intensity is independent of XU
h (u, θ0). This independence is the basis for the

estimation of the parameters of the MPH model. We denote the hazard in (15) by κ0(u).

Example 1 [Piecewise constant hazard and time-varying covariate]. Consider an MPH

model with a single timevarying covariateX(t). The baseline hazard is piecewise constant,

so

λ(t, α) = eαI(0 ≤ t ≤ t1) + I(t > t1).

The covariate X(t) is changing, for all individuals, at time t2 > t1 from random variable

X1 to X2. Thus, the hazard rate of U is

κU (u) =


e(α0−α)+(β0−β)X1E[V |U ≥ u] 0 ≤ U ≤ eα+βX1t1

e(β0−β)X1E[V |U ≥ u] eα+βX1t1 < U ≤ eα+βX1t1 + eβX2(t2 − t1)

e(β0−β)X2E[V |U ≥ u] U > eα+βX1t1 + eβX2(t2 − t1).

(16)

For the population parameter value θ0 = (α0, β0), this becomes

κ0(u) = E[V |U ≥ u].

If V has a Gamma distribution with mean 1 and variance σ2, then

κ0(u) =
1

1 + σ2u
.
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The basis of the LRE is that for the true transformation, and only for the true parameter

vector, the hazard rate of the transformed variable is constant if we condition on V. This

implies that the unconditional hazard rate (i.e. without conditioning on V ) only depends

on the distribution of V and not on the regressors. A typical way to test the significance

of a covariate on the hazard is the rank-test (see Prentice (1978)). This test is based

on (possibly weighted) comparisons of the estimated nonparametric hazard rates. It is

also equivalent to the score test for significance of a (vector of) coeffi cient(s) that arises

from the Cox partial likelihood. The test rejects the influence of the covariate(s) on the

hazard when it is ‘close’to zero. Tsiatis (1990) shows that the inverse of the rank test,

the value of the (vector of) coeffi cient(s) that sets the rank-test equal to zero, can be used

as an estimation equation for AFT models. Here we extend the inverse rank estimation

to include the parameters of the duration dependence.

Before we elaborate on the LRE in detail, we first discuss nonparametric identification

of the MPH model.

2.3. Identification. Using the counting process framework, we can express an impor-

tant assumption on the covariate process. We assume that with dX(t) = X(t+)−X(t)

dX(t)⊥N(s), s ≥ t|Yh(t), Xh(t). (17)

For the observation process we make a similar assumption. As noted, in all cases of

interest we have Y (t) = I(t ≤ T )IC(t) with some random set, e.g. the set t ≤ C for right

censoring. We assume

dIC(t)⊥N(s), s ≥ t|Yh(t), Xh(t). (18)

In other words, we assume that changes in X and IC at t are conditionally independent

of the occurrence of the event after t. This means that X(t) and IC(t) are predetermined

at t. Note that if X(t) or IC(t) depends on V , then these assumptions cannot hold.

In (3) and the following equations, we condition on the unobserved V . The correspond-

ing unconditional results are obtained by taking the expectation of V given Yh(t), Xh(t).

If Y (t) = I(t ≤ T )IC(t) with IC(t) independent of V , then we need not condition on
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IC(t), and the conditional expectation is

E
(
V |T ≥ t, Yh(t), Xh(t)

)
. (19)

The hazard that is not conditional on V is

κ(t|Xh(t), θ) = λ(t, α)eβ
′X(t)E

[
V |T ≥ t, Yh(t), Xh(t)

]
. (20)

Nonparametric identification of the MPH model has been studied by Elbers and Ridder

(1982) and Heckman and Singer (1984a). These results refer to the model in which

both the baseline hazard and the distribution of the unobserved heterogeneity are left

unspecified. In their proofs, Elbers and Ridder (1982) need the assumption the mean

of the distribution of V is finite, and Heckman and Singer (1984a) need the assumption

that the tail of that distribution decreases at a fast enough and known rate. Ridder and

Woutersen (2003) show that it is possible to replace assumptions on the distribution of

V by an assumption on the behavior of the baseline hazard near 0. They show that with

time constant covariates the semiparametric MPH model with parametric baseline hazard

is identified if the following assumptions hold.

(I1) 0 < limt↓0 λ(t, α0) < ∞. Further Λ(t, α0) = 1 for some t0 and Λ(∞, α0) = ∞ with

Λ(t, α0) =
∫ t

0
λ(s, α0) ds.

(I2) V and X are stochastically independent.

(I3) There are x1, x2 in the support of X with β′0x1 6= β′0x2.

(I4) If λ(t, α0) = λ(t, α̃0) for all t > 0, then α0 = α̃0, and if β
′
0x = β̃

′
0x for all x in the

support of X, then β0 = β̃0.

The key assumptions are the bound on the baseline hazard in 0 in assumption (I1)

and assumptions (I2) and (I3). The other assumptions are normalizations (second part of

assumption (I1)) or assumptions that ensure the identification of the parametric functions

(assumption (I4)). The main difference with the identification results in Elbers and Ridder

and Heckman and Singer is that assumptions on the distribution of V are replaced by an

assumption on the baseline hazard in 0. The duality of these two types of assumptions is a
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consequence of the Tauber theorem (see Feller (1971), Chapter 13). The assumptions for

identification can be weakened if some of the covariates are timevarying, but assumptions

(I1)-(I4) are also suffi cient in that case.

3. The Linear Rank Estimator

There are a number of estimators for transformation models that transform to an unspec-

ified distribution. Amemiya (1985) has shown that the Nonlinear 2SLS estimator intro-

duced in Amemiya (1974) can be used to estimate both the regression parameters and the

parameters in the transformation. Han (1987) proposed an estimator that maximizes the

rank correlation between the transformed dependent variable and a linear combination of

the covariates (see also Sherman (1993)). Han’s estimator can be used if the regressors are

time constant and if the durations are not censored, and the same is true for more recent

estimators that are based on rank correlation, e.g. Kahn (2001), Chen (2002) while Kahn

and Tamer (2007) allow for censoring but require that the regressors are time-constant.

Amemiya’s N2SLS estimator can be used even with timevarying covariates, but not with

censored data. The Linear Rank Estimator (LRE) for this transformation model can deal

with both timevarying regressors and general noninformative censoring.

Before we turn to the general model, we discuss a simple example to provide more

insight into the inverse rank estimation approach. Suppose we would like to test whether

a covariate X influences the hazard. If the covariate does not influence the hazard, the

mean of the covariate among the survivors does not change with the survival time, i.e.

E[X|T ≥ t] = E[X]. Then the rank test statistic is (assuming no censoring)
n∑
i

[
Xi −

∑
j Yj(ti)Xj∑
j Yj(ti)

]
,

where the second term is the average of the covariate among those units still alive at

ti. Thus, for each observation of the covariate we compare the observed value with its

expected value among those still alive (under the hypothesis of no effect of the covariate)

and sum over all observations. If this sum is significantly different from zero, then we

reject the null of no influence.

Now assume that the true model is an MPH model without duration dependence with

transformed duration U = eβXT . Then, for the true parameter β = β0 the hazard of
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U does not depend on the covariate X. This implies that the rank statistic for the true

parameter on the transformed U—time is zero. However, the β0 is unknown and an inverse

rank estimate β̂ of β0 is the value of β for which

n∑
i

[
Xi −

∑
j Y

U
j (Ui)Xj∑

j Y
U
j (Ui)

]
= 0

with Ui = eβ̂Xiti and Y Uj (u) = I(Uj ≥ u), the observation indicator on the (transformed)

U—time. Tsiatis (1990) used this statistic as an estimating equation for the parameters

in a censored linear regression model, and Robins and Tsiatis (1992) employed the same

statistic to estimate the parameters in the Accelerated Failure Time (AFT) model with

timevarying covariates introduced by Cox and Oakes (1984).

3.1. The Linear Rank Estimator. In the general MPH model, we consider a ran-

dom sample T̃i,∆i, Xh,i(Ti), i = 1, . . . , N . The indicator ∆i is 1 if the duration is ob-

served and 0 if it is censored. For some θ this random sample can be transformed to

Ũi(θ),∆i, X
U
h,i

(
Ũi(θ)

)
, i = 1, . . . , N . The rank statistic for these data is

SN (θ,W ) =

N∑
i=1

∆i

{
W
(
Ũi(θ), X

U
h,i

(
Ũi(θ)

))
−Wh

(
Ũi(θ)

)}
(21)

with

Wh

(
Ũi(θ)

)
=

∑N
j=1 Y

U
j

(
Ũi(θ)

)
W
(
Ũi(θ), X

U
h,j

(
Ũi(θ)

))
∑N
j=1 Y

U
j

(
Ũi(θ)

) .

In (21) W is a known function of Ũi(θ) and XU
h,i

(
Ũi(θ)

)
with a dimension not smaller

than that of θ. The interpretation of SN is that it compares the weight function for a

transformed duration that ends at Ũi(θ) to the average of the weight functions at that

time for the units that are under observation. The suggestion is that the difference

between the weight function for unit i and the average weight function for the units under

observation is 0 at the population parameter value θ0. In large samples this is correct

if we choose, for instance, W
(
Ũi(θ), X

U
h,i

(
Ũi(θ)

))
= XU

h,i

(
Ũi(θ)

)
because for θ = θ0 the

transformed duration U0 is independent of XU
h,i. Another choice of W is the indicator

function, W
(
Ũi(θ), X

U
h,i

(
Ũi(θ)

))
= I(uk < Ũi(θ) ≤ uk+1) where uk and uk+1 are just two

scalars. For θ = θ0 the transformed durations U0i are identically distributed, and this

implies that the rank statistic is 0 in large samples for this choice of W .
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Because SN (θ,W ) is not continuous in θ (if W is continuous in Ũ(θ) it need not be a

step function either), we may not be able to find a solution to SN (θ,W ) = 0. For that

reason, we define the Linear Rank Estimator (LRE) of the parameters of the MPH model

by

θ̂N (W ) = arg min
θ∈Θ

SN (θ,W )′SN (θ,W ). (22)

Lemma 1 below shows that SN is asymptotically equivalent to a linear (and hence con-

tinuous) function in θ.

Example 2 [Continuation of Example 1]. Simple weight functions for this example are

Wβ(u,X) = X(u)

Wα(u,X) = I
(
0 ≤ u ≤ eαt1eβX(u)

)
with X(u) = X1 when h−1(U,Xh(t), θ) ≤ t2 and X(u) = X2 otherwise. Denote the

interval indicator by I1
(
u,Xi(u)

)
The estimation equations become

SN,β(θ,W ) =

N∑
i=1

∆i

{
Xi(Ũi)−

∑N
j=1 I(Ũj ≥ Ui)Xj(Ũi)∑N

j=1 I(Ũj ≥ Ũi)

}

SN,α(θ,W ) =

N∑
i=1

∆i

{
I1
(
Ũi, Xi(Ũi)

)
−
∑N
j=1 I(Ũj ≥ Ũi)I1

(
Ũi, Xj(Ũi)

)∑N
j=1 I(Ũj ≥ Ũi)

}
.

The expression for the rank statistic simplifies if we order the observations by increasing

transformed duration

Ũ(1)(θ) ≤ Ũ(2)(θ) ≤ . . . ≤ Ũ(N)(θ).

In the ordered transformed durations, we obtain

SN,β(θ,W ) =

N∑
i=1

∆(i)

{
X(i)(Ũ(i))−

∑N
j=iX(j)

(
Ũ(i)

)
N − i+ 1

}

SN,α(θ,W ) =

N∑
i=1

∆(i)

{
I1
(
Ũ(i), X(i)(Ũ(i))

)
−
∑N
j=i I1

(
Ũ(i), X(j)(Ũ(i))

)
N − i+ 1

}
.

Thus, SN,β compares the value of X(i) at transformed duration Ũ(i) (which is either

drawn from X1 or from X2) to the average value of X(j) of all j > i at Ũ(i) and takes

the sum over all (uncensored) units. SN,α compares the value of the indicator function,

I
(
Ũ(i), X(i)(Ũ(i))

)
, at transformed duration Ũ(i) (which is either 1 or 0) to the average

value of the indicator functions, I
(
Ũ(i), X(j)(Ũ(i))

)
of all j > i at Ũ(i).
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The functions SN,β and SN,α are not continuous in θ = (α, β). The points of discon-

tinuity are values of θ that make e.g. Ũ(k)(θ) = Ũ(k+1)(θ). If ∆(k) = ∆(k+1) = 1, the

discontinuity is

X(k+1)

(
Ũ(k)(θ)

)
−X(k)

(
Ũ(k)(θ)

)
N − k (23)

I

(
Ũ(k) ≤ eαt1 exp

[
βX(k+1)

(
Ũ(k)(θ)

)])
−I
(
Ũ(k) ≤ eαt1 exp

[
βX(k)

(
Ũ(k)(θ)

)])
N − k , (24)

and this difference goes to 0 if N increases for both Wβ(u,X) and Wα(u,X).

For consistency and asymptotic normality of the MPH LRE estimator, we make the follow-

ing assumptions. To simplify the expressions, we use the notation hi(t, θ) = h(t,Xh,i(t), θ).

(A1) The conditional distribution of T given X(·) and V has hazard rate

κ(t|Xh(t), V, θ) = λ(t, α)eβ
′X(t)V (25)

with X(·) a K covariate bounded stochastic process that is independent of V and

such that if the probability of the event {c′1X(t) + c2 lnλ(t, α0) = 0, t ∈ S} some set

S with positive measure and for some constants c1, c2, then c1 = c2 = 0. For the

baseline hazard, 0 < limt↓0 λ(t, α0) <∞.

(A2) For the covariate process X(t), t ≥ 0, we assume that the sample paths are piece-

wise constant, i.e. its derivative with respect to t is 0 almost everywhere, and left

continuous. The hazard that is not conditional on V is

κ(t|Xh(t), θ) = λ(t, α)eβ
′X(t)E

[
V |T ≥ t, Yh(t), Xh(t)

]
. (26)

The observation process is Y (t), t ≥ 0 with Y (t) = I(t ≤ T )I(t ≤ C) and we assume

dI(t ≤ C)⊥N(s), s ≥ t|Yh(t), Xh(t). (27)

The support of C is bounded.

(A3) The parameter vector θ = (β′, α′)′ is an M vector with β a K vector and α an

L vector. The parameter space Θ is convex. The baseline hazard λ(t, α) > 0 and

is twice differentiable and the second derivative is bounded in α (in the parameter

space) and t.
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(A4) The weight function W
(
u,XU

h (u)
)
is an M vector of bounded and left continuous

functions. If

Wh

(
Ũi(θ)

)
=

∑N
j=1 Y

U
j

(
Ũi(θ)

)
W
(
Ũi(θ), X

U
h,j

(
Ũi(θ)

))
∑N
j=1 Y

U
j

(
Ũi(θ)

) , (28)

then there are functions µ(u, θ) (an M vector), Vβ(u, s, θ) (an M ×K matrix), and

Vα(u, s, θ) (an M × L matrix) such that

sup
θ∈Θ,u≤τ+ψ

∣∣Wh(u, θ)− µ(u, θ)
∣∣ p→ 0 (29)

and

sup
θ∈Θ,u≤τ+ψ
s≤τ+ψ

∣∣∣∣ 1

N

N∑
i=1

(
W
(
u,XU

h,i(u, θ)
)
−Wh(u, θ)

)
Y Ui (u, θ)XU

i (s, θ)′−Vβ(u, s, θ)

∣∣∣∣ p→ 0

(30)

and

sup
θ∈Θ,u≤τ+ψ
s≤τ+ψ

∣∣∣∣ 1

N

N∑
i=1

(
W
(
u,XU

h,i(u, θ)
)
−Wh(u, θ)

)
Y Ui (u, θ)

∂ lnλ

∂α′
(
h−1
i (s, θ)−Vα(u, s, θ)

∣∣∣∣ p→ 0.

(31)

Define

B(θ0) = −
∫ τ

0

∫ u

0

Vβ(u, s, θ)κ′0(u) dsdu−
∫ τ

0

Vβ(u, u, θ)κ0(u)du (32)

A(θ0) = −
∫ τ

0

∫ u

0

Vα(u, s, θ)κ′0(u) dsdu−
∫ τ

0

Vα(u, u, θ)κ0(u)du. (33)

We assume that the M ×M matrix
[
B(θ0)A(θ0)

]
is nonsingular.

The restriction on the baseline hazard in Assumption A1 ensures identification (see

Section 3) and guarantees that the semiparametric information bound is nonsingular (see

below). Assumption A2 states that the covariates and the observation indicator are pre-

determined. Assumption A4 is about smoothness: Suppose that one censors all the data

at u = τ +ψ, then the expressions in equation (30) and (31) do not change if the value of

ψ varies. The derivation of the asymptotic distribution of the LR estimator follows the

proof in Tsiatis (1990). Tsiatis requires that the density of U0 is bounded. For the MPH

model, this density is

f(u0) = E
[
V e−u0V

]
.
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If E(V ) = ∞, this density is not bounded in u0 = 0. Inspection of Tsiatis’proof shows

that this does not change the result, and we do not need to impose the restriction that

E(V ) is finite. The transformed durations are observed up to τ with τ <∞ such that for

some ψ, η > 0

Pr
[
min(U0, C) > τ + ψ

]
≥ η.

In the MPH model, this is just an assumption on the distribution of C because for U0 it

is satisfied for all τ <∞.

The next lemma shows that the linear rank statistic is asymptotically equivalent to a

statistic that is linear in the parameters.

Lemma 1

Under assumptions (A1)—(A4) for all C > 0

sup

|θ−θ0|≤CN
−

1
2

N−
1
2

∣∣∣SN (θ,W )− S̃N (θ,W )
∣∣∣ p→ 0 (34)

with

S̃N (θ,W ) =

N∑
i=1

∫ τ

0

(
W
(
u,XU

h,i(u, θ0)
)
−Wh(u, θ0)

)
dM0

i (u)

+B(θ0)N(β − β0) +A(θ0)N(α− α0). (35)

Proof : See Appendix.

From Lemma 1, we obtain the asymptotic distribution of the LRE.

Theorem 1

Under assumptions (A1)—(A4) we have with D(θ0) =
[
A(θ0)B(θ0)

]
√
N(θ̂N − θ0)

d→ N
(
0, D(θ0)−1V (θ0)D′(θ0)−1

)
(36)

with

1

N

N∑
i=1

∫ τ

0

(
W
(
u,XU

h,i(u, θ0)
)
−Wh(u, θ0)

)(
W
(
u,XU

h,i(u, θ0)
)
−Wh(u, θ0)

)′
·

· Y Ui (u, θ0)κ0(u) du
p→ V (θ0). (37)
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Proof : By van der Vaart (1998) Theorem 5.45, we have from Lemma 1

√
N(θ̂N − θ0) = D(θ0)−1 1√

N

∫ τ

0

(
W
(
u,XU

h,i(u, θ0)
)
−Wh(u, θ0)

)
dMi0

with M0 the martingale associated with the counting process N0 for U0. By the central

limit theorem for integrals of predetermined functions with respect to a martingale, (see

e.g. Anderson et al. (1993)), the sum on the right-hand side converges to a normal

distribution with the variance matrix in (37).

The variance matrix of the LRE is the limit of (we suppress the dependence on XU
h,i(u, θ0)

and Y Uh,i(u, θ0) and use a subscript i instead)

[
1

N

N∑
i=1

∫ τ

0

(
Wi(u)−Wh(u, θ0)

)∂ lnκUi
∂θ′

Y Ui (u, θ0)κ0(u)du
]−1

·

[
1

N

N∑
i=1

∫ τ

0

(
Wi(u)−Wh(u, θ0)

)(
Wi(u)−Wh(u, θ0)

)′
Y Ui (u, θ0)κ0(u) du

]
·

[
1

N

N∑
i=1

∫ τ

0

(
Wi(u)−Wh(u, θ0)

)∂ lnκUi
∂θ′

Y Ui (u, θ0)κ0(u)du
]′
−1 (38)

By the Cauchy-Schwartz inequality, this matrix is minimal if

W0i

(
u,XU

h,i(u, θ0)
)

=
∂ lnκU

(
u|XU

h,i(u, θ0)
)

∂θ
. (39)

With this weighting matrix, V (θ0) = D(θ0) and the variance matrix of the LRE with the

optimal weighting matrix is V (θ0). A consistent estimator of this matrix is

1

N

N∑
i=1

∫ τ

0

(
W0i(u)−Wh,0(u, θ0)

)(
W0i(u)−Wh,0(u, θ0)

)′
dN(u), (40)

which is just the average over the uncensored population transformed durations U0.

The optimal weighting function depends on the distribution of U0 through its hazard

and the derivative of that hazard. In the Appendix, we find from (B.1) and (B.2) that

∂ lnκU (u, θ)

∂α
= −κ

′
0(u)

κ0(u)

∫ u

0

∂ lnλ

∂α

(
h−1

0 (s), α0

)
ds− (41)

− ∂ lnλ

∂α

(
h−1

0 (u), α0

)
∂ lnκU (u, θ)

∂β
= −κ

′
0(u)

κ0(u)

∫ u

0

X
(
h−1

0 (s)
)
ds−X

(
h−1

0 (u)
)
. (42)

Note that the inverse of the transformed duration is also needed, so that a closed form of

this inverse is desirable.
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Example 3 [Continuation of Example 1]. By (B.1) and (B.2) the optimal weighting func-

tions are

W0β(u,X) = −
(

1 + u
κ′0(u)

κ0(u)

)
X(u)

W0α(u,X) = −
(

1 + u
κ′0(u)

κ0(u)

)
I(0 ≤ u ≤ eαt1eβX(u)).

If U0 is unit—exponentially distributed, i.e. if there is no unobserved heterogeneity, then

we obtain the weighting functions in Example 2. In general, this weighting function is a

feasible but suboptimal choice. Note that factor in W0 depends on the distribution of V .

If V has a Gamma distribution with mean 1 and variance σ2, then

1 + u
κ′0(u)

κ0(u)
=

1

1 + σ2u
.

Hence the weight decreases with the transformed duration.

4. The Linear Rank Estimator with an Estimated weight function

First, we simplify the notation by suppressing the dependence of the weight function on

the covariate history. Instead we make the dependence of this function on the parameters

θ0 and the hazard of U0, κ0, explicit. With this change, the LRE estimating equation is

SN (θ,W ) =

N∑
i=1

∆i

{
Wi

(
Ũi(θ), θ0, κ0

)
−Wh

(
Ũi(θ), θ0, κ0

)}
(43)

with

Wh

(
Ũi(θ), θ0, κ0

)
=

∑N
j=1 Y

U
j

(
Ũi(θ)

)
Wj

(
Ũi(θ), θ0, κ0

)∑N
j=1 Y

U
j

(
Ũi(θ)

) .

The optimal weight functions are given in (41) and (42). We obtain an estimated weight

function by substituting the consistent first-stage estimates β̂N , α̂N for the parameters

and by using a nonparametric estimator for the hazard κ0 of U0 and its derivative. This

complicates the asymptotic analysis of the estimator because the estimated weight func-

tion is not predictable, i.e. at (transformed duration) time u it depends on values of the

transformed durations beyond u.

To deal with this problem, we use a method that was first used by Lai and Ying

(1991). They suggested to split the sample i = 1, . . . , N randomly into two subsamples

of size N1 and N2 with N1 + N2 = N and N1 = O(N), N2 = O(N). Sample 1 is used
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to obtain consistent, but not necessarily effi cient, estimators of α, β which we denote

by β̂N1
, α̂N1

and the corresponding transformed durations U1i(θ̂N1
), i = 1, . . . , N1. The

residuals are used in a nonparametric estimator of the hazard of U(θ0), κ̂0N1
, and this

nonparametric estimator and the estimated parameters are substituted in (41) and (42)

to obtain the estimated weight functionWi(u, θ̂N1
, κ̂0N1

). The same steps for subsample 2

gives the estimated weight function Wi(u, θ̂N2 , κ̂0N2). The estimated weight function

Wi(u, θ̂N1 , κ̂0N1) is used in the estimating equation for subsample 2

S2N2

(
θ,W (·, θ̂N1

, κ̂0N1
)
)

=

N2∑
i=1

∆i

{
Wi

(
Ũ2i(θ), θ̂N1

, κ̂0N1

)
−Wh

(
Ũ2i(θ), θ̂N1

, κ̂0N1

)}
.

(44)

In the same way, the estimated weight function derived from subsample 2 is used in

the estimating equation for subsample 1, S1N1

(
θ,W (·, θ̂N2 , κ̂0N2)

)
. The effi cient LRE

estimator makes the combined estimating equation

SN
(
θ,W (·, θ̂N2

, κ̂0N2
),W (·, θ̂N1

, κ̂0N1
)
)

= S1N1

(
θ,W (·, θ̂N2

, κ̂0N2
)
)
+S2N2

(
θ,W (·, θ̂N1

, κ̂0N1
)
)

(45)

equal to zero, or because the SN is a step function, the effi cient LRE is defined by

θ̂N (W ) = arg min
θ∈Θ

∣∣∣SN(θ,W (·, θ̂N2
, κ̂0N2

),W (·, θ̂N1
, κ̂0N1

)
)∣∣∣2. (46)

The advantage of the sample splitting is that the estimated weight functionWi(u, θ̂N1
, κ̂0N1

)

does not depend on the transformed durations U2i(θ), i = 1, . . . , N2 that enter in

S2N2

(
θ,W (·, θ̂N1

, κ̂0N1
)
)
. We can think of the parameters θ̂N1

and the estimated trans-

formed durations U1i(θ̂N1
), i = 1, . . . , N1 as determined at time 0 in the analysis of

S2N2

(
θ,W (·, θ̂N1 , κ̂0N1)

)
, and the usual operations can be performed to derive e.g. its

variance (conditional on θ̂N1) and the estimated transformed durations U1i(θ̂N1), i =

1, . . . , N1. The linearization lemma applies to random, but predictable weight functions

that converge uniformly to a nonstochastic function. To prove uniform convergence of the

weight function, we must establish the uniform convergence of the nonparametric estima-

tor of κ0 based on the estimated transformed durations (see Lemmas 2 and 3). We need

to know the uniform rate of convergence because we need to modify the nonparametric

hazard estimator to avoid a zero denominator in the weight function.



A Simple GMM Estimator for the Semiparametric Mixed Proportional Hazard Model 22

The nonparametric hazard estimator is the kernel estimator of Ramlau-Hansen (1983).

If we were to observe the possibly censored transformed durations Ũi(θ0), i = 1, . . . , N

the kernel estimator is

κ̂N (u, θ0) =
1

bN

N∑
i=1

∆i

I
(
Y UN (Ũi(θ0), θ0) > 0

)
Y Uh,N (Ũi(θ0), θ0)

K

(
u− Ũi(θ0)

bN

)
(47)

with Y UN (u, θ0) =
∑N
i=1 Y

U
i (u, θ0) and Y Uh,N (u, θ0) = Y UN (u, θ0)/N .

The properties of the kernel hazard estimator have been studied by Ramlau-Hansen

(1983) and Andersen et al. (1993). In particular, Theorem IV.2.2. of Andersen et al.

(1993) gives a suffi cient condition for uniform convergence. Inspection of their proof

shows that the same method gives Lemma 2.

Lemma 2

If the derivative κ′ is bounded on [0, τ ], then for ε > 0 with

inf
0≤u≤τ

b2NN
1−εY Uh,N (u, θ0)

p→∞ (48)

and

bNN
1−ε →∞, (49)

we have

sup
u1≤u≤u2

N ε
∣∣κ̂N (u, θ0)− κ0(u)

∣∣ p→ 0 (50)

for u1, u2 with 0 < u1 < u2 < τ .

If Yh,N (t) is bounded away from zero on [0, τ ] for large N , then (48) and (49) imply that

if bN = N−c for ε < c < 1
2 − ε, then ε <

1
4 . Note that the uniform convergence holds on

a compact subset of [0, τ ]. Although this can be generalized to uniform convergence on

[0, τ ], the variable kernels that are needed for this generalization complicate the asymptotic

analysis. In practice, estimation of the hazard is inaccurate near the endpoints, and it

may be preferable to exclude observations that are close to the endpoints. Note that the

observations near the endpoints are used in the estimation of the hazard. Also, using a

bandwidth proportional to N−1/5 and ε = 1
11 satisfies all the assumptions of this paper.

We do not observe the transformed duration Ũ0(θ0) but rather an estimate Ũ0(θ̂N ) of
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this transformed duration, and hence we consider the kernel estimator

κ̂N (u, θ̂N ) =
1

bN

N∑
i=1

∆i

I
(
Y UN (Ũi(θ̂N ), θ̂N ) > 0

)
Y Uh,N (Ũi(θ̂N ), θ̂N )

K

(
u− Ũi(θ̂N )

bN

)
. (51)

Lemma 3

The kernel K is positive and bounded on [−1, 1] (and zero elsewhere) and satisfies a

Lipschitz condition on this interval. The covariate process X(t) is bounded on [0, τ ] and

so is
∣∣∂λ(t,α)

∂α

∣∣ for all α in an open neighborhood of α0. Moreover

I
(
Y UN (u, θ) > 0

)
Y Uh,N (u, θ)

p→ H(u, θ) (52)

uniformly for 0 ≤ u ≤ τ , θ ∈ N(θ0) and H has derivatives that are bounded for 0 ≤ u ≤

τ , θ ∈ N(θ0). Then for ε > 0 such that

b2NN
1
2−ε →∞, (53)

we have

sup
0≤u≤τ

N ε
∣∣κ̂N (u, θ̂N )− κ̂N (u, θ0)

∣∣ p→ 0. (54)

Proof : See Appendix.

Note that the conditions on bN are determined in Lemma 2 and that a bandwidth propor-

tional to N−1/5 and ε = 1
11 satisfies all the assumptions of this paper. The fact that we

use estimated transformed durations does not change the restrictions on the bandwidth

choice.

At this point we consider the condition in (52) more closely. With h(T, θ) =
∫ T

0
λ(t, α)eβ

′X(t)dt,

if the duration T is (right) censored at C, Y (t) = I(T ≥ t)I(C ≥ t), so

Y U (u, θ) = I
(
h(T, θ) ≥ u

)
· I
(
h(C, θ) ≥ u

)
.

If the censoring time and the duration are conditionally independent given the history up

to t, i.e.

I(T ≥ t)⊥I(C ≥ t)
∣∣Y (s), X(t), 0 ≤ s ≤ t, (55)

then

I
(
h(T, θ) ≥ u

)
⊥I
(
h(C, θ) ≥ u

)∣∣Y U (s), XU (t), 0 ≤ s ≤ u. (56)
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If N(θ0) is an open neighborhood of θ0, Xi and Ci are i.i.d., and

sup
θ∈N(θ0)0≤u≤τ

Pr
(
h(T, θ) < u

)
< 1 (57)

sup
θ∈N(θ0)0≤u≤τ

Pr
(
h(C, θ) < u

)
< 1, (58)

then

inf
θ∈N(θ0)0≤u≤τ

I
(
Y UN (u, θ) > 0

) p→ 0 (59)

and by the uniform law of large numbers

Y Uh,N (u, θ)
p→ Pr

(
h(T, θ) ≥ u

)
· Pr
(
h(C, θ) ≥ u

)
(60)

uniformly for θ ∈ N(θ0) and 0 ≤ u ≤ τ . Because by (57) the limit is bounded away from

zero, we have
I
(
Y UN (u, θ) > 0

)
Y Uh,N (u, θ)

p→ H(u, θ) (61)

uniformly for θ ∈ N(θ0) and 0 ≤ u ≤ τ with

H(u, θ) =
1

Pr
(
h(T, θ) ≥ u

)
· Pr
(
h(C, θ) ≥ u

) . (62)

Because h(T, θ0) = U0, (53) holds for θ = θ0 if κ0(u) is bounded for 0 ≤ u ≤ τ . From the

expression for κU (u, θ) in (13), a suffi cient condition for κU (u, θ) to be bounded for all θ

in a neighborhood of θ0 and 0 ≤ t ≤ τ is that λ(t, α) > 0 for all t and on a neighborhood

of α0. In the same way, (54) holds if the hazard of C is bounded and λ(t, α) is bounded

away from zero in a neighborhood around α0.

5. Monte Carlo experiments

In this section we show that estimating a hazard regression with NPMLE can lead to

biased inference if we allow for duration dependence and unobserved heterogeneity when

they are not present in the DGP. The LRE does not suffer from this misspecification.

5.1. Sample design. We try to resemble the simulation experiments by Baker and

Melino (2000) who choose true hazards that match those typically observed in unemploy-

ment duration data. They assume a discrete time duration model, while we consider a
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continuous time model. First we consider the very simple exponential model without un-

observed heterogeneity (and no duration dependence) and one explanatory variable, that

is

λ(t|Xi) = exp(Xiβ + β0), (63)

where X is normally distributed with mean zero and variance 0.5. The true value of

the regression parameter, β, is 1. The true value of the intercept, β0, is ln(0.05). The

variance of X and the regression parameter determine the relative importance of the

unobserved heterogeneity; they determine how accurate we can estimate β and whether

we can distinguish duration dependence from unobserved heterogeneity. We choose the

variance of X such that the R2 from a regression of the log duration on X is 0.13, close

to values typically observed in practice. This implies that the average duration is 22.5,

say weeks. In practice the durations are often censored, that is only observed up to a

certain time. We choose a moderate censoring scheme that censors all durations lasting

more than 40 (weeks). This implies a censoring rate of 16%. We generated 100 random

samples of size 5000 for this DGP and stored it.

We are interested in the effect of wrongly assuming duration dependence and/or un-

observed heterogeneity. We therefore consider estimating a flexible duration dependence

despite the fact that the DGP has no duration dependence. In the estimation we assume

three alternative specifications for the duration dependence: none, a piecewise constant

duration dependence on four intervals and a piecewise constant duration dependence on

10 intervals. This implies the following baseline hazard

λ0(t) =

K∑
k=1

eαkIk(t) (64)

with K = 4 or 10 and Ik(t) = I(tk−1 ≤ t < tk), which is one if the duration falls between

tk−1 and tk. For the 4 interval piecewise constant duration dependence, we choose t0 = 0,

t1 = 5, t2 = 10, t3 = 20 and t4 = ∞, such that each interval contains about a quarter

of the durations. For the 10 interval piecewise constant duration dependence, we have

t0 = 0, t1 = 2, t2 = 4, t3 = 6, t4 = 10, t5 = 13, t6 = 16, t7 = 20, t8 = 25, t9 = 30 and

t10 = ∞, such that each interval contains about 10% of the durations. The parameter

of the first interval, α1, is fixed to zero. The remaining α’s now reflect the proportional
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shift in the baseline hazard in each interval compared to the first, base, interval. This

facilitates the comparison between the MLE results and the LRE results.

The effect of wrongly assuming unobserved heterogeneity is investigated by estimat-

ing an MPH model with discrete unobserved heterogeneity using a maximum likelihood

procedure. In one approach, we assume a fixed number of two support points for the

distribution of the unobserved heterogeneity, (MLE two points)2 . The other approach

estimates the NPMLE of Heckman and Singer (1984b) where the number of support

points is determined by the Gateaux derivative3 . Note that multiplicative unobserved

heterogeneity does not influence the LRE procedure.

For the LRE, we use the most simple weight functions, Xi for β and the interval

indicator on the transformed time scale, Ik(u) = I
(
mk−1(X, t) ≤ u < mk−1(X, t)

)
with

mk(X, t) = eβX
∫ tk

0
λ(s) ds, for αk. These weight functions might be ineffi cient but it

simplifies the estimation. In Section 5.3 we elaborate on estimating effi cient LRE in just

one additional step. To obtain the LRE, we need to solve the minimizer of the quadratic

form of the estimation equations in (22). However the statistic Sn(θ;W ) is a multi—

dimensional step—function and the standard Newton—Raphson algorithm cannot be used

to solve this. One of the alternative methods for finding the roots of a non—differentiable

function is the Powell method. This method (see Press et al.(1986, §10.5) and Powell

(1964)) is a multidimensional version of the Brent algorithm.

The Powell method does not always stop at a parameter value that makes the S-

statistic close to zero. A nice feature of our estimation procedure is that it provides

a convergence test because the solution of the estimation equations implies that a small

change of the value of any element of the parameter leads to a sign change in the S-statistic.

Thus, when the Powell method stopped before reaching convergence, we reiterated the

method until convergence was found.

2 In the MLE for models with duration dependence, we do not need the standard identification restric-
tion that the unobserved heterogeneity term has mean one because the baseline hazard is normalized to
be equal to one in the first interval.

3The Gâteaux derivative is a directional derivative; let x ∈ RK and f(x) ∈ R, η ∈ R, and η > 0 then
df(x, a) = limη↓0[{f(x+ aη)− f(x)}/η].
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We also investigate the effect of sample size on our estimations. We consider three

values for the number of observations in the sample: 500, 1000 and 5000. The experiments

involving a sample size of 500 are constructed using the first 500 observations of the 5000

observations generated by the true DGP. For the experiments involving a sample size of

1000, we add to the observations in the experiments the next 500 generated observations.

For each of the alternative duration dependences and each sample size, we apply four

different estimation procedures: MLE of MPH without unobserved heterogeneity (PH-

model), MLE two points, NPMLE and LRE. Thus in total we have 36 experiments in our

sample design constructed from 1 DGP, 3 specifications for the duration dependence, 3

sample sizes and 4 different estimation techniques.

5.2. Monte Carlo Results. In Table 1 we report the average bias and standard

deviation of the average for the estimates of β in the 36 experimental settings.4 For each

of the 3 sample sizes, we took the 100 simulated samples and estimated β using each of

the three alternative duration dependence specifications and the four different estimation

procedures.5

The results indicate that assuming a discrete unobserved heterogeneity distribution

when it is absent leads to well behaved estimates when it is known that there is no

duration dependence. The LRE is also unbiased and the effi ciency of the LRE is close to

the MLE.

Assuming duration dependence when it is absent also leads to well behaved estimators

of β when it is known that there is no unobserved heterogeneity. However, the combination

of a flexible duration dependence and the distribution of the unobserved heterogeneity

leads to a systematic positive bias for the maximum likelihood estimates of β that declines

very slowly with sample size. This is in line with the results from Baker and Melino

(2000). The LRE continues to provide unbiased estimates of β despite assuming duration

dependence that is not present.

If β is not estimated well, this is reflected in the estimates of the parameters of the

4Our calculations were done in Gauss 6.0 on 3 parallel computers: a Pentium 2.1 PC, a Pentium 2.8
PC and a Pentium 2.0 laptop. The calculations took about 9 weeks of CPU time.

5The LRE with a duration dependence on 10 intervals for a sample size of 500 did not converge in 7
of the experiments. The average is therefore base on 93 experiments instead of 100.
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Table 1: Average bias of estimates of β across the experiments
Duration dependence estimation method Sample size

500 1000 5000
No duration dependence MLE no hetero 0.0017 0.0051 -0.0010

(0.0115) (0.0080) (0.0035)
MLE 2 points 0.0198 0.0247∗ 0.0038

(0.0122) (0.0086) (0.0040)
NPMLE 0.0191 0.0165∗ 0.0046

(0.0118) (0.0082) (0.0037)
LRE 0.0028 0.0045 -0.0008

(0.0122) (0.0084) (0.0038)
4 piecewise constant MLE no hetero 0.0022 0.0048 -0.0022

(0.0115) (0.0082) (0.0036)
MLE 2 points 0.0599∗ 0.0531∗ 0.0144∗

(0.0153) (0.0120) (0.0044)
NPMLE 0.1142∗ 0.0765∗ 0.0241∗

(0.0160) (0.0116) (0.0045)
LRE 0.0286 0.0179 -0.0041

(0.0172) (0.0128) (0.0057)
10 piecewise constant MLE no hetero 0.0005 0.0038 -0.0022

(0.0116) (0.0082) (0.0036)
MLE 2 points 0.0734∗ 0.0571∗ 0.0273∗

(0.0162) (0.0127) (0.0052)
NPMLE 0.2376∗ 0.1519∗ 0.0592∗

(0.0247) (0.0162) (0.0067)
LREa -0.0161 -0.0124 -0.0040

(0.0247) (0.0192) (0.0092)
∗p < 0.05

Based on 93 experiments, because in 7 experiments the estimation procedure did not convergence

duration dependence (see Table A.1 and Table A.2 in Appendix A). Assuming unobserved

heterogeneity when it is absent leads to a positive duration dependence that declines very

slowly with the sample size. Baker and Melino (2000) also find that an overestimation of

β is accompanied by a positive bias in the estimated duration dependence. Note that the

MLE of the model without unobserved heterogeneity also leads to a bias in the estimated

duration dependence in small samples. The LRE estimates the nonexistent duration

dependence well, although at the expense of effi ciency loss.

5.3. Duration dependence and effi ciency. Two remaining interesting issues are

estimating duration dependence that is truly present and the effi ciency of the (optimal)

LRE. If unobserved heterogeneity is present, the optimal LRE should be more effi cient

than the first stage LRE (see example 3). To this end we simulate four different random

samples from a gamma-mixture with different types of duration dependence. We assume
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a piecewise constant baseline hazard on 3 intervals, 0—5, 5—20 and 20 and over, with

λ0(t) =
∑3
k=1 e

αkIk(t) and α1 = 0 with the following four types of duration dependence:

1 Positive duration dependence: α2 = 0.2 and α3 = 0.5;

2 Negative duration dependence: α2 = −0.2 and α3 = −0.4;

3 U-shaped duration dependence: α2 = −0.2 and α3 = 0.2;

4 Inverse U-shaped duration dependence: α2 = 0.2 and α3 = −0.2.

Again we assume that we have only one explanatory variable X that is normally distrib-

uted with mean zero and variance 0.5. The true value of the regression parameter, β, is 1.

The variance of the gamma mixture is 0.75. For each DGP, we create 100 samples of 1000

observations and store them. We estimate the regression parameter and the parameters of

the duration dependence by the following six alternative methods (i) MLE for a gamma-

mixture (the true model); (ii) MLE no unobserved heterogeneity; (iii) MLE with discrete

unobserved heterogeneity and two points of support; (iv) NPMLE where the number of

support points is determined by the Gateaux derivative; (v) LRE and (vi) Optimal LRE.

We estimate the parameters using both the uncensored sample and a sample in which the

durations are artificially censored at 30. This implies a censoring rate of around 15%.

For the first stage LRE we use, again, the weight functions, Xi for β and the interval

indicator on the transformed time scale, Ik(u) for αk. For calculating the optimal LRE, we

need to know the distribution of U0 because the optimal weighting function depends on the

distribution of U0 through its hazard and the derivative of that hazard (see (41) and (42)).

We use the method with an estimated weight function described in Section 4 to obtain the

effi cient optimal LRE. First we randomly split each sample into two subsamples. Then, for

each subsample, we estimate the parameters and the corresponding transformed durations

using LRE. Based on the transformed durations of the first subsample, we estimate the

weights in the second subsample and vice versa. We use the kernel estimator of Ramlau-

Hansen (1983) to obtain these functionals. The effi cient LRE is now obtained from the

combined estimation equation (45) and equal is given in (46), see Section 4.

In Table 2, we report the average bias, the standard deviation of the average bias

and the RMSE for the estimates of β in the four experimental settings. Table 3 gives

the results for the censored sample.6 The results indicate that ignoring the unobserved

heterogeneity leads to a severe bias. Using a two point discrete unobserved heterogeneity

6The results for the parameters of the piecewise constant duration dependence, α2 and α3, are given

in Table A.3 and Table A.4 in Appendix A.
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Table 2: Average bias, standard error and RMSE of estimates of β across the experiments
Duration dependence estimation method

bias std error RMSE
positive duration dependence MLE gamma -0.0074 0.0222 0.0234

MLE no hetero −0.3884∗ 0.0232 0.3889
MLE 2 points −0.2656∗ 0.0202 0.2664
NPMLE -0.0036 0.0216 0.0219
LRE -0.0264 0.0245 0.0360
LRE-opt -0.0205 0.0238 0.0314

negative duration dependence MLE gamma 0.0331 0.0206 0.0390
MLE no hetero −0.3963∗ 0.0270 0.3970
MLE 2 points −0.2797∗ 0.0242 0.2808
NPMLE 0.0382 0.0230 0.0446
LRE 0.0341 0.0238 0.0416
LRE-opt 0.0296 0.0231 0.0375

U-shaped duration dependence MLE gamma -0.0208 0.0192 0.0283
MLE no hetero −0.3707∗ 0.0299 0.3711
MLE 2 points −0.2895∗ 0.0170 0.2900
NPMLE -0.0088 0.0203 0.0221
LRE -0.0138 0.0231 0.0269
LRE-opt -0.0124 0.0206 0.0240

inverse U duration dependence MLE gamma 0.0248 0.0184 0.0309
MLE no hetero −0.3798∗ 0.0165 0.3806
MLE 2 points −0.2743∗ 0.0174 0.2748
NPMLE 0.0341 0.0191 0.0391
LRE 0.0190 0.0205 0.0280
LRE-opt 0.0195 0.0202 0.0281

∗p < 0.05. For each DGP (gamma mixture) 100 simulations with 1000 observations each.

distribution to approximate the true gamma heterogeneity distribution still leads to biased

estimation results. The MLE based on the true gamma mixture DGP is, not surprisingly,

the most effi cient estimation procedure.

For two of the four DGP’s the RMSE of the NPMLE is higher than the RMSE of

the LRE. In particular, for both the negative and the inverse U-shaped duration depen-

dence, the NPMLE is biased if the sample is censored. The optimal LRE is 5% to 25%

(uncensored U-shaped duration dependence) more effi cient than the LRE.
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Table 3: Average bias, standard error and RMSE of estimates of β across the experiments,
censored sample
Duration dependence estimation method

bias std error RMSE
positive duration dependence MLE gamma -0.0098 0.0228 0.0248

MLE no hetero −0.3420∗ 0.0158 0.3424
MLE 2 points −0.1204∗ 0.0236 0.1227
NPMLE 0.0048 0.0238 0.0243
LRE -0.0277 0.0249 0.0372
LRE-opt -0.0253 0.0247 0.0353

negative duration dependence MLE gamma 0.0398 0.0213 0.0451
MLE no hetero −0.3164∗ 0.0151 0.3668
MLE 2 points −0.0527∗ 0.0241 0.0579
NPMLE 0.0550∗ 0.0228 0.0595
LRE 0.0419 0.0231 0.0478
LRE-opt 0.0406 0.0229 0.0466

U-shaped duration dependence MLE gamma -0.0171 0.0194 0.0259
MLE no hetero −0.3289∗ 0.0144 0.3292
MLE 2 points −0.1346∗ 0.0226 0.1365
NPMLE -0.0094 0.0203 0.0224
LRE -0.0330 0.0198 0.0385
LRE-opt -0.0298 0.0196 0.0356

inverse U duration dependence MLE gamma 0.0265 0.0185 0.0323
MLE no hetero −0.3311∗ 0.0126 0.3321
MLE 2 points −0.0632∗ 0.0203 0.0664
NPMLE 0.0395∗ 0.0193 0.0440
LRE 0.0297 0.0194 0.0355
LRE-opt 0.0263 0.0191 0.0325

For each DGP 100 (gamma mixture) simulations with 1000 observations each. 10-18% censored.
∗p < 0.05
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5.4. Timevarying covariates. One advantage of the LRE is that it can handle

timevarying covariates. In the next Monte Carlo study, we show that LRE performs

rather well when regressors vary with time. Note that a hazard model is a very natural

way to model timevarying regressors. To this end we simulate random samples from a

gamma-mixture with positive duration dependence that includes a timevarying covariate.

We assume a piecewise constant baseline hazard on three intervals: 0—5, 5—20 and 20 and

over, with λ0(t) =
∑3
k=1 e

αkIk(t), α1 = 0, α2 = 0.2 and α3 = 0.5.

Now we assume that we have two explanatory variables, a time-constant variable X0 that

is normally distributed with mean zero and variance 0.5 with a true regression parameter

β0 of 0.6 and a timevarying variableX1(t) that is also normally distributed with mean zero

and variance 0.5, but it changes value after t = 5 and t = 20. These changes are exogenous

to the process. The true regression parameter of the timevarying covariate is 0.4. The

variance of the gamma mixture is 0.75. We create 500 samples of 1000 observations and

store them. We estimate the regression parameter and the parameters of the duration

dependence using the LRE and the Optimal LRE, both on the uncensored sample and

a sample in which the durations are artificially censored at 30. This implies a censoring

rate of around 42%.

For the first stage LRE, we use the weight functions, X0i and X1i(u) for β0 and β1

and the interval indicator on the transformed time scale, Ik(u) for αk. For calculating

the optimal LRE, we need to know the distribution of U0, because the optimal weighting

function depends on the distribution of U0 through its hazard and the derivative of that

hazard. We use a Ramlau-Hansen kernel method to obtain these functionals necessary to

estimate the weight function of the effi cient optimal LRE.

In Table 4 we report the average bias, the standard deviation of the average bias and

the RMSE for the estimates of the two regression parameters β0 (time-constant covariate)

and β1 (timevarying covariate) and the parameters of the baseline hazard. The results

show that the LRE and optimal LRE give consistent estimates of all parameters. The

optimal LRE is slightly more effi cient, although the effi ciency gain is rather small.
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Table 4: Average bias, standard error and RMSE of estimates of the parameters for a

model with time-varying covariates

parameter estimation method

bias std error RMSE

Uncensored

β0 LRE 0.0014 0.0049 0.0051

LRE-opt 0.0011 0.0048 0.0050

β1 LRE -0.0011 0.0035 0.0037

LRE-opt -0.0005 0.0034 0.0035

α2 LRE 0.0044 0.0090 0.0100

LRE-opt 0.0016 0.0088 0.0090

α3 LRE 0.0038 0.0128 0.0133

LRE-opt -0.0022 0.0127 0.0130

Censored

β0 LRE -0.0034 0.0049 0.0060

LRE-opt -0.0040 0.0048 0.0059

β1 LRE -0.0017 0.0033 0.0037

LRE-opt -0.0012 0.0032 0.0035

α2 LRE -0.0049 0.0091 0.0104

LRE-opt -0.0055 0.0089 0.0104

α3 LRE -0.0151 0.0131 0.0199

LRE-opt -0.0172 0.0130 0.0216

500 simulations with 1000 observations each.
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6. Empirical Application

Much of the theoretical and empirical literature on the economics of migration views mi-

grations as permanent. This is a convenient assumption and often facilitates the analysis

of immigrant behavior and the impact of migration on the host country. The life—cycle

theories imply that assimilation in the host country and migration decisions are corre-

lated over time. It is therefore more appropriate to base the analysis of migration on a

dynamic model that takes the timing of migration moves into account. The literature on

the timing of out-migration is rather scarce (see Borjas and. Bratsberg (1996)). Bijwaard

(2010) shows that recent migrants to the Netherlands leave rather fast. After 5 years,

about 40% of the labor migrants have left the country. We use a subset of this data by

choosing a particular group of migrants. However, the data now includes information on

labor market status and income. The observation window is also extended with two more

years.

We have data on recent immigrants to the Netherlands (1999-2007). All immigration

by non-Dutch citizens, immigrants who do not hold the Dutch nationality, and who legally

entered The Netherlands is registered in the Central Register Foreigners (Centraal Regis-

ter Vreemdelingen, CRV), using information from the Immigration Police (Vreemdelingen

Politie) and the Immigration and Naturalization Service (Immigratie- en Naturalisatie Di-

enst, IND). For all these immigrants without the Dutch nationality, we know when their

migration move(s) took place and their migration motive to enter the Netherlands. For

people with a nationality that implies a visa to enter The Netherlands, their migration

motive can be directly derived from their legal entry status. People with other, Western

nationalities, fill in their migration motive at their mandatory registration at their mu-

nicipality of residence. The data further contain information on the timing of migration

moves, both on the timing of immigration and on the timing of (return) emigration. This

enables us to construct the duration till out-migration (or the end of the observation

window).

The CBS, Statistics Netherlands, has linked these data to the Municipal Register of

Population (Gemeentelijke Basisadministratie, GBA) and to their Social Statistical data-

base (SSB). The GBA data contain basic demographic characteristics of the migrants,

such as age, gender, marital status and country of origin. From the SSB, we have in-

formation (on a monthly basis) on the labor market position and income. The most

important income source determines the labor market position. In this article we restrict

the analysis to female labor migrants aged 18 to 64 at entry from EU-countries who en-

tered the Netherlands in 1999, have a monthly income above 1000 per month at entry.
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We end up with 552 individual migrants for which we have 7604 records (an average of

13.8 per migrant, due to changes in timevarying information such as labor market status

and income). From these migrants, 371 (67%) left the Netherlands before the end of the

observation period (Dec 31, 2007).

Table 5 provides the estimates of the out-migration intensity of these female labor

migrants. Self-employed migrants have higher investments and are therefore less prone to

leave the Netherlands. Married migrants also remain longer in the country. The income

of the migrant plays an important role in explaining the out-migration. It has a U-shaped

effect, as both low income and high income lead to faster out-migration.

As usual the inclusion of unobserved heterogeneity in the intensity (compare the PH to

NPMLE) leads to more pronounced positive duration dependence and regression parame-

ters further away from zero. However, the LRE and optimal LRE lead to an insignificant

duration dependence. The regression parameters also change when using the LRE proce-

dures. The optimal LRE is only slightly more effi cient than the LRE.
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Table 5: Estimates for the out-migration intensity

PH NPMLE LRE optimal LRE

self-employed −1.0660∗ −1.3132∗ −1.2221∗ −1.1949∗

(0.5833) (0.7257) (0.6479) (0.6423)

Inactive 0.2037 0.2411 0.3086 0.2587

(0.2834) (0.2878) (0.3239) (0.3179)

Married −0.5997∗∗ −0.7010∗∗ −0.7180∗∗ −0.7101∗∗

(0.1492) (0.1831) (0.1871) (0.1832)

Divorced −0.0832 −0.0508 −0.1079 −0.1062

(0.3185) (0.3833) (0.3574) (0.3500)

age −0.1712 −0.2437∗ −0.2086 −0.1431

(0.1249) (0.1454) (0.1566) (0.1387)

age-squared 0.1509∗∗ 0.2037∗∗ 0.1769∗ 0.1407

(0.0721) (0.1026) (0.1038) (0.0945)

income < 1000 1.5917∗∗ 1.8734∗∗ 1.7653∗∗ 1.7579∗∗

(0.3056) (0.3307) (0.3638) (0.3578)

income 1000 - 2000 0.0691 0.1613 0.0563 0.0454

(0.2838) (0.3059) (0.3057) (0.3031)

income 3000 - 4000 0.2333 0.2775 0.2354 0.2566

(0.2070) (0.2208) (0.2186) (0.2165)

income 4000 - 5000 0.2605 0.3208 0.3062 0.2912

(0.2740) (0.2927) (0.3043) (0.3004)

income 5000 - 6000 0.8144∗∗ 0.8999∗∗ 0.9068∗∗ 0.8884∗∗

(0.3024) (0.3024) (0.3217) (0.3174)

income > 6000 0.9958∗∗ 1.1321∗∗ 1.1204∗∗ 1.0933∗∗

(0.2286) (0.2520) (0.2788) (0.2742)

duration dependence

α2 (6—12 mos) 1.6817∗∗ 1.6924∗∗ 0.6356 0.6362

(0.5389) (0.5413) (0.8118) (0.8094)

α3 (1—2 year) 2.0537∗∗ 2.2079∗∗ 1.1352 1.1040

(0.5131) (0.5229) (0.8879) (0.8852)

α4 (2—5 year) 1.9660∗∗ 2.4048∗∗ 1.3782 1.3006

(0.5079) (0.5501) (0.9320) (0.9276)

α5 (> 5 year) 1.6034∗∗ 2.2239∗∗ 1.2578 1.2114

(0.5122) (0.5803) (0.9681) (0.9602)

Standard error in brackets. The age is centered by its mean value (33) and divided by ten. ∗p < 0.10

and ∗∗p < 0.05
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7. Conclusion

In this paper, we have discussed and implemented a simple
√
N consistent estimator for

the parameters of a semiparametric MPH model with an unspecified distribution of the

unobserved heterogeneity. This Linear Rank Estimator (LRE) is a GMM estimator that

uses moment conditions to derive estimating equations. It is based on the linear rank

statistic. We have derived the asymptotic properties of the LRE and of the two-stage

optimal LRE.

We presented Monte Carlo evidence that the LRE performs well in samples of moderate

size. In contrast to the commonly applied Nonparametric MLE of Heckman and Singer

(1984b), the LRE provides asymptotically unbiased estimates of the regression coeffi cients

despite allowing for nonexistent duration dependence. Moreover, we derive the asymptotic

distribution of the LRE estimators (so that we can derive confidence intervals) while

the rate of convergence and the asymptotic distribution of the Nonparametric MLE are

unknown.
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A. Appendix: Additional tables

Table A.1: Average bias of estimates of the log α’s across the experiments with a piecewise
constant duration dependence on 4 intervals

Estimation method Sample size
500 1000 5000

MLE no hetero α2 −0.0480∗ −0.0319∗ −0.0095∗

(0.0150) (0.0103) (0.0042)
α3 −0.0082 −0.0127 −0.0094∗

(0.0132) (0.0088) (0.0041)
α4 −0.0149 −0.0102 −0.0079

(0.0127) (0.0089) (0.0046)
MLE 2 points α2 0.0282 0.0257 0.0140∗

(0.0194) (0.0158) (0.0053)
α3 0.1131∗ 0.0713∗ 0.0257∗

(0.0237) (0.0175) (0.0064)
α4 0.1480∗ 0.1013∗ 0.0438∗

(0.0273) (0.0213) (0.0076)
NPMLE α2 0.0785∗ 0.0495∗ 0.0211∗

(0.0210) (0.0152) (0.0050)
α3 0.2011∗ 0.1207∗ 0.0389∗

(0.0275) (0.0183) (0.0059)
α4 0.2835∗ 0.1782∗ 0.0612∗

(0.0339) (0.0228) (0.0079)
LRE α2 −0.0333 −0.0234 −0.0074

(0.0230) (0.0184) (0.0066)
α3 0.0391 0.0158 −0.0087

(0.0306) (0.0224) (0.0093)
α4 0.0536 0.0264 −0.0109

(0.0383) (0.0287) (0.0128)

∗p < 0.05
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Table A.2: Average bias of estimates of the log α’s across the experiments with a piecewise
constant duration dependence on 10 intervals

Sample size Sample size
500 1000 5000 500 1000 5000

MLE no hetero MLE 2 points
α2 −0.0240 −0.0098 0.0068 0.0704∗ 0.0498∗ 0.0464∗

(0.0216) (0.0153) (0.0063) (0.0230) (0.0176) (0.0080)
α3 −0.0162 −0.0089 −0.0090 0.1096∗ 0.0740∗ 0.0420∗

(0.0241) (0.0157) (0.0061) (0.0283) (0.0195) (0.0086)
α4 −0.0609∗ −0.0378∗ −0.0069 0.0958∗ 0.0627∗ 0.0590∗

(0.0207) (0.0135) (0.0054) (0.0273) (0.0204) (0.0098)
α5 0.0073 −0.0035 −0.0115 0.1991∗ 0.1229∗ 0.0690∗

(0.0206) (0.0144) (0.0069) (0.0305) (0.0231) (0.0117)
α6 −0.0097 −0.0024 −0.0059 0.1986∗ 0.1348∗ 0.0766∗

(0.0207) (0.0127) (0.0067) (0.0340) (0.0226) (0.0123)
α7 −0.0593∗ −0.0464∗ −0.0074 0.1617∗ 0.0971∗ 0.0823∗

(0.0226) (0.0154) (0.0072) (0.0364) (0.0269) (0.0135)
α8 −0.0144 −0.0130 −0.0023 0.2161∗ 0.1491∗ 0.0963∗

(0.0204) (0.0151) (0.0070) (0.0360) (0.0277) (0.0141)
α9 −0.0209 −0.0076 −0.0120 0.2309∗ 0.1616∗ 0.0964∗

(0.0243) (0.0149) (0.0075) (0.0388) (0.0284) (0.0137)
α10 −0.0383 −0.0217 −0.0078 0.2324∗ 0.1658∗ 0.1068∗

(0.0206) (0.0153) (0.0071) (0.0379) (0.0287) (0.0154)
NPMLE LREa

α2 0.1790∗ 0.1157∗ 0.0703∗ −0.0648∗ −0.0460∗ 0.0088
(0.0267) (0.0184) (0.0088) (0.0298) (0.0221) (0.0106)

α3 0.3039∗ 0.1880∗ 0.0871∗ −0.0784 −0.0664∗ −0.0070
(0.0397) (0.0239) (0.0099) (0.0446) (0.0315) (0.0136)

α4 0.3730∗ 0.2298∗ 0.1181∗ −0.1236∗ −0.0942∗ −0.0041
(0.0466) (0.0298) (0.0120) (0.0514) (0.0387) (0.0166)

α5 0.5390∗ 0.3248∗ 0.1372∗ −0.0554 −0.0605 −0.0093
(0.0554) (0.0343) (0.0146) (0.0599) (0.0443) (0.0203)

α6 0.5848∗ 0.3649∗ 0.1573∗ −0.0716 −0.0617 −0.0050
(0.0583) (0.0383) (0.0151) (0.0646) (0.0496) (0.0220)

α7 0.5910∗ 0.3554∗ 0.1692∗ −0.1230 −0.1079∗ −0.0078
(0.0646) (0.0413) (0.0170) (0.0698) (0.0530) (0.0245)

α8 0.6916∗ 0.4232∗ 0.1884∗ −0.0844 −0.0792 −0.0042
(0.0678) (0.0429) (0.0179) (0.0782) (0.0570) (0.0258)

α9 0.7346∗ 0.4594∗ 0.1918∗ −0.0921 −0.0819 −0.0157
(0.0734) (0.0441) (0.0191) (0.0782) (0.0578) (0.0278)

α10 0.7758∗ 0.4816∗ 0.2123∗ −0.1230 −0.1038 −0.0117
(0.0736) (0.0486) (0.0209) (0.0803) (0.0637) (0.0309)

For sample size of 500 based on 93 experiments, because in 7 experiments the estimation procedure did

not convergence . ∗p < 0.05
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Table A.3: Average bias, standard error and RMSE of estimates of parameters of piece-
wise constant baseline hazard across the experiments, Second set of Monte Carlo
experiments
Duration dependence estimation method

bias std error RMSE
positive duration dependence MLE gamma α2 0.0069 0.0096 0.0118

α3 −0.0149 0.0206 0.0255
NPMLE α2 0.0205 0.0157 0.0258

α3 0.0091 0.0283 0.0298
LRE α2 −0.0130 0.0200 0.0238

α3 −0.0645 0.0329 0.0724
LRE-opt α2 −0.0134 0.0195 0.0236

α3 −0.0533 0.0327 0.0625
negative duration dependence MLE gamma α2 0.0211 0.0111 0.0239

α3 0.0553∗ 0.0229 0.0598
NPMLE α2 0.0345∗ 0.0174 0.0386

α3 0.1079∗ 0.0310 0.1123
LRE α2 0.0369∗ 0.0179 0.0410

α3 0.0643∗ 0.0315 0.0716
LRE-opt α2 0.0358∗ 0.0178 0.0400

α3 0.0627∗ 0.0314 0.0701
U-shaped duration dependence MLE gamma α2 −0.0009 0.0097 0.0097

α3 −0.0338∗ 0.0173 0.0379
NPMLE α2 0.0385∗ 0.0155 0.0416

α3 0.0149 0.0251 0.0292
LRE α2 0.0334 0.0186 0.0383

α3 −0.0215 0.0271 0.0346
LRE-opt α2 0.0261 0.0183 0.0319

α3 −0.0247 0.0263 0.0361
inverse U duration dependence MLE gamma α2 0.0102 0.0104 0.0146

α3 −0.0047 0.0232 0.0237
NPMLE α2 0.0232 0.0140 0.0271

α3 0.0327 0.0295 0.0440
LRE α2 0.0335 0.0183 0.0381

α3 0.0400 0.0336 0.0522
LRE-opt α2 0.0321 0.0182 0.0369

α3 0.0344 0.0336 0.0481

For each DGP (gamma mixture) 100 simulations with 1000 observations each. ∗p < 0.05
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Table A.4: Average bias, standard error and RMSE of estimates of parameters of piece-
wise constant baseline hazard across the experiments, Second set of Monte Carlo
experiments, censored sample
Duration dependence estimation method

bias std error RMSE
positive duration dependence MLE gamma α2 0.0010 0.0135 0.0135

α3 −0.0267 0.0269 0.0379
NPMLE α2 0.0120 0.0177 0.0213

α3 −0.0204 0.0310 0.0371
LRE α2 −0.0148 0.0199 0.0248

α3 −0.0656∗ 0.0329 0.0734
LRE-opt α2 −0.0138 0.0199 0.0242

α3 −0.0599 0.0328 0.0683
negative duration dependence MLE gamma α2 0.0347∗ 0.0131 0.0371

α3 0.0633∗ 0.0277 0.0691
NPMLE α2 0.0417∗ 0.0184 0.0456

α3 0.0898∗ 0.0325 0.0956
LRE α2 0.0378∗ 0.0182 0.0420

α3 0.0539 0.0329 0.0631
LRE-opt α2 0.0375∗ 0.0181 0.0416

α3 0.0501 0.0327 0.0598
U-shaped duration dependence MLE gamma α2 0.0052 0.0133 0.0143

α3 −0.0269 0.0225 0.0350
NPMLE α2 0.0308 0.0173 0.0353

α3 −0.0159 0.0292 0.0333
LRE α2 0.0266 0.0184 0.0323

α3 −0.0321 0.0254 0.0410
LRE-opt α2 0.0263 0.0182 0.0320

α3 −0.0315 0.0253 0.0404
inverse U duration dependence MLE gamma α2 0.0137 0.0123 0.0184

α3 −0.0030 0.0263 0.0264
NPMLE α2 0.0183 0.0149 0.0236

α3 0.0283 0.0305 0.0416
LRE α2 0.0340 0.0185 0.0387

α3 0.0360 0.0335 0.0491
LRE-opt α2 0.0313 0.0183 0.0363

α3 0.0290 0.0333 0.0441

For each DGP (gamma mixture) 100 simulations with 1000 observations each. ∗p < 0.05
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B. Appendix: Proofs

B.1. Proof of Lemma 1. S̃N (θ) is a linearization of S̃N (θ). Because SN (θ) is not

continuous in θ, it is not possible to linearize this function by a first order Taylor series

expansion. Instead we linearize the hazard rate of the transformed durations U(θ). From

(8) and (9) we obtain

U = h
(
h−1

0 (U0), θ
)
.

This relates the hazard of the distribution of U(θ) to that of U0

κU (u, θ) = κ0

(
h0

(
h−1(u, θ)

))λ(h−1(u, θ), α0

)
λ
(
h−1(u, θ), α

) e(β0−β)′X
(
h−1(u,θ)

)
.

Because h
(
h−1(u, θ), θ

)
= u, we have

∂h−1

∂θ
(u, θ) = −

∂h
∂θ

(
h−1(u, θ), θ

)
∂h
∂t

(
h−1(u, θ), θ

) .
The derivatives of κU (u, θ) with respect to θ are

∂κU (u, θ)

∂α

∣∣∣
θ=θ0

= −κ′0(u)

∫ h−10 (u)

0

∂λ

∂α
(t, α0)eβ

′
0X(t)dt− κ0(u)

∂ lnλ

∂α

(
h−1

0 (u), α0

)
= κ′0(u)

∫ u

0

∂ lnλ

∂α

(
h−1

0 (s), α0

)
ds− κ0(u)

∂ lnλ

∂α

(
h−1

0 (u), α0

)
, (B.1)

where the last equality follows from a change of variables in the integral. In the same

way, we obtain with a change of variable in the integral

∂κU (u, θ)

∂β

∣∣∣
θ=θ0

= −κ′0(u)

∫ h−10 (u)

0

λ(t, α0)eβ
′
0X(t)dt− κ0(u)X

(
h−1

0 (u)
)

= κ′0(u)

∫ u

0

X
(
h−1

0 (s), α0

)
ds− κ0(u)X

(
h−1

0 (u)
)
. (B.2)

The proof consists of checking the conditions for asymptotic linearity of SN (θ) in Tsiatis

(1990) and a computation of the coeffi cients in the linear approximation. In Tsiatis’proof

the covariate in the estimating equation is Xi. We have W
(
u,XU

h,i(u, θ)
)
and hence the

requirement that this is a vector of bounded functions. The equations (29), (30) and (31)

are stability conditions (see also Andersen et al. (1993)). Instead of a mean and variance

condition as in Tsiatis (1990), we have a mean and two covariance conditions. Note that

by setting s = u, we obtain conditions for uniform convergence to Vα(u, u) and Vβ(u, u).

The final condition for linearization is that for u ≤ τ∣∣∣κU (u, θ)− κ0(u)− ∂κU

∂θ′
(u, θ0)(θ − θ0)

∣∣∣ ≤ |θ − θ0|2h(u). (B.3)

The assumptions that λ(t, α) is bounded away from zero for all t ≥ 0 and α in the

parameter space, that
∣∣ ∂2λ
∂α∂α′ (t, α)

∣∣ <∞ for all t ≥ 0 and α in the parameter space, and
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that X(t) is bounded, imply that the second derivative of κU (u, θ) with respect to θ is

bounded for all u ≤ τ and θ ∈ Θ. This is suffi cient for (B.3) if the parameter space is

convex.

Next we linearize SN (θ). Because

dNU
i (u, θ) = dMU

i (u, θ) + Y Ui (u, θ)κUi(u, θ)du,

we have if |θ − θ0| is small

SN (θ) =

N∑
i=1

∫ τ

0

(
W
(
u,XU

h,i(u, θ0)
)
−Wh(u, θ0)

)
dM0

i (u)+

+
[ N∑
i=1

∫ τ

0

(
W
(
u,XU

h,i(u, θ0)
)
−Wh(u, θ0)

)
Y 0
i (u)

∂κUi
∂θ′

(u, θ0)du
]
(θ − θ0) + o(|θ − θ0|).

(B.4)

The second term is after substitution of (B.1), and (B.2)

−
[∫ τ

0

∫ u

0

N∑
i=1

(
W
(
u,XU

h,i(u, θ0)
)
−Wh(u, θ0)

)
Y 0
i (u)

∂ lnλ

∂α′
(
h−1

0i (s), α0

)
κ′0(u)dsdu+

+

∫ τ

0

N∑
i=1

(
W
(
u,XU

h,i(u, θ0)
)
−Wh(u, θ0)

)
Y 0
i (u)

∂ lnλ

∂α′
(
h−1

0i (u), α0

)
κ0(u)du

]
(α− α0)−

−
[∫ τ

0

∫ u

0

N∑
i=1

(
W
(
u,XU

h,i(u, θ0)
)
−Wh(u, θ0)

)
Y 0
i (u)X

(
h−1

0i (s), α0

)
κ′0(u)dsdu+

+

∫ τ

0

N∑
i=1

(
W
(
u,XU

h,i(u, θ0)
)
−Wh(u, θ0)

)
Y 0
i (u)X

(
h−1

0i (u), α0

)
κ0(u)du

]
(β − β0) (B.5)

The normalized vectors of coeffi cients converge to (32) and (33) if (30) and (31) hold.

This proves the lemma.

B.2. Proof of Lemma 2 and 3. We have

N ε
∣∣κ̂N (u, θ̂N )− κ̂N (u, θ0)

∣∣ ≤∣∣∣∣ N ε

NbN

N∑
i=1

∆i

(
I
(
Y UN (Ũi(θ̂N ), θ̂N ) > 0

)
Y Uh,N (Ũi(θ̂N ), θ̂N )

−
I
(
Y UN (Ũi(θ0), θ0) > 0

)
Y Uh,N (Ũi(θ0), θ0)

K

(
u− Ũi(θ0)

bN

)∣∣∣∣+
+

∣∣∣∣ N ε

NbN

N∑
i=1

∆i

(
K

(
u− Ũi(θ̂N )

bN

)
−K

(
u− Ũi(θ0)

bN

))
I
(
Y UN (Ũi(θ̂N ), θ̂N ) > 0

)
Y Uh,N (Ũi(θ̂N ), θ̂N )

∣∣∣∣. (B.6)

We first consider the second term. Because K is Lipschitz this is bounded by

CN ε

Nb2N

N∑
i=1

∆i

∣∣Ũi(θ̂N )− Ũi(θ0)
∣∣I(Y UN (Ũi(θ̂N ), θ̂N ) > 0

)
Y Uh,N (Ũi(θ̂N ), θ̂N )

. (B.7)
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Moreover by the mean value theorem, we have that for some intermediate βiN , αiN

Ũi(θ̂N )− Ũi(θ0) =

∫ T̃i

0

λ(t, αiN )eβ
′
iNXi(s)Xi(s)

′ ds(β̂N − β0) + (B.8)

+

∫ T̃i

0

eβ
′
iNXi(s)

∂λ(t, αiN )

∂α′
ds(α̂N − α0).

Because Xi(t) is bounded on [0, τ ] and so is
∣∣∂λ(t,α)

∂α

∣∣ for all α in an open neighborhood
of α0, (B.8) is bounded by |c′1(β̂N − β0)|+ |c′2(α̂N − α0)

∣∣ and substitution in (B.7) gives
the upper bound

C

N

N∑
i=1

∆i

I
(
Y UN (Ũi(θ̂N ), θ̂N ) > 0

)
Y Uh,N (Ũi(θ̂N ), θ̂N )

(
N ε|c′1(β̂N − β0)|

b2N
+
N ε|c′2(α̂N − α0)|

b2N

)
. (B.9)

Because the estimator θ̂N is
√
N consistent, the upper bound converges to 0 in probability

if b2NN
1
2−ε →∞.

Next we consider the first term in (B.6). By subtraction and addition of expected

values, this term is bounded by∣∣∣∣∣ N ε

NbN

N∑
i=1

∆i

[
I
(
Y UN (Ũi(θ̂N ), θ̂N ) > 0

)
Y Uh,N (Ũi(θ̂N ), θ̂N )

K

(
u− Ũi(θ̂N )

bN

)
−

− E

(
I
(
Y UN (Ũi(θ̂N ), θ̂N ) > 0

)
Y Uh,N (Ũi(θ̂N ), θ̂N )

K

(
u− Ũi(θ̂N )

bN

)∣∣∣∣∆i = 1

)]∣∣∣∣∣+
+

∣∣∣∣∣ N ε

NbN

N∑
i=1

∆i

[
I
(
Y UN (Ũi(θ0), θ0) > 0

)
Y Uh,N (Ũi(θ0), θ0)

K

(
u− Ũi(θ0)

bN

)
−

− E

(
I
(
Y UN (Ũi(θ0), θ0) > 0

)
Y Uh,N (Ũi(θ0), θ0)

K

(
u− Ũi(θ0)

bN

)∣∣∣∣∆i = 1

)]∣∣∣∣∣+
+

N ε

NbN

N∑
i=1

∆i

∣∣∣∣∣E
[
I
(
Y UN (Ũi(θ̂N ), θ̂N ) > 0

)
Y Uh,N (Ũi(θ̂N ), θ̂N )

K

(
u− Ũi(θ̂N )

bN

)∣∣∣∣∆i = 1

)]
−

E

[
I
(
Y UN (Ũi(θ0), θ0) > 0

)
Y Uh,N (Ũi(θ0), θ0)

K

(
u− Ũi(θ0)

bN

)∣∣∣∣∆i = 1

)]∣∣∣∣∣. (B.10)

The first and second terms converge to 0 in probability if bNN
1
2−ε →∞. Because of (52)

the final term converges in probability to

N ε

NbN

N∑
i=1

∆i

∣∣∣∣∣E
[
H
(
Ũi(θ̂N ), θ̂N

)
K

(
u− Ũi(θ̂N )

bN

)]
− E

[
H
(
Ũi(θ0), θ0

)
K

(
u− Ũi(θ0)

bN

)]∣∣∣∣∣
(B.11)
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This expression is bounded (both H and K are bounded) by

N ε

NbN

N∑
i=1

∆iE

[∣∣∣H(Ũi(θ̂N ), θ̂N
)
−H

(
Ũi(θ0), θ0

)∣∣∣]+
+

N ε

NbN

N∑
i=1

∆iE

[∣∣∣∣K(u− Ũi(θ̂N )

bN

)
K

(
u− Ũi(θ0)

bN

)∣∣∣∣]. (B.12)

The first term goes to 0 in probability if bNN
1
2−ε →∞ and the second if b2NN

1
2−ε →∞.

This completes the proof.
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